2023-07-21 00:00:00
浏览:
可能与传统的减材制造方式相比,3d打印几乎不会造成金属材料浪费,而且这种“增材制造”直接成形的特点使得产品在生产过程中的设备问题大大减少。
金属粉体材料是金属3D打印的原材料,其粉体的基本性能对成型的产品品质有着很大的关系。金属3D打印对于粉体的要求主要在化学成分、颗粒形状、粒度及粒度分布、流动性、循环使用性等这几个方面。3D打印模型
一.化学成分
原料的化学主要成分包括金属元素和杂质,主要金属元素常用的有Fe、Ti、Ni、Al、Cu、Co、Cr以及贵金属Ag、Au等。杂质有还原铁中的Si、Mn、C、S、P、O等,以及从原料和粉末生产中中混入的其他杂质等,粉体表面吸附的水及其他气体等。
在成型过程过程,杂质可能会与基体发生反应,改变基体性质,给产品品质带来负面的影响。掺杂物的存在也会使粉体熔化不均,易造成产品的内部缺陷。粉体含氧量较高时,金属粉体不仅易氧化,形成氧化膜,还会导致球化现象,影响产品的致密度及品质。
因此,需要严格控制原料粉体的杂质及掺杂以保证产品的品质,所以,3D打印用金属粉体需要采用纯度较高的金属粉体原料。3D打印模型
二、颗粒形状、粉体粒度及粒度分布
1、形状要求。常见的颗粒的形状有球形、近球形、片状、针状及其他不规则形状等。不规则的颗粒具有更大的表面积,有利于增加烧结驱动。但球形度高的粉体颗粒流动性好,送粉铺粉均匀,有利于提升产品的致密度及均匀度。因此,3D打印用粉体颗粒一般要求是球形或者近球形。
2、粉体粒度及粒度分布。研究表明,粉体是通过直接吸收激光或电子束扫描时的能量而熔化烧结,粒子小则表面积大,直接吸收能量多,更易升温,越有利于烧结。此外,粉体粒度小,粒子之间间隙小,松装密度高,成形后零件致密度高,因此有利于提高产品的强度和表面质量。但粉体粒度过小时,粉体易发生粘附团聚,导致粉体流动性下降,影响粉料运输及铺粉均匀。
所以细粉、粗粉应该以一定配比混合,选择恰当的粒度与粒度分布以达到预期的成形效果。
三、粉体的工艺性能要求
粉体的工艺性能主要包括松装密度、振实密度、流动性和循环利用性能。3D打印模型
1、松装密度是粉末自然堆积时的密度,振实密度是经过振动后的密度。球形度好、粒度分布宽的粉末松装密度高,孔隙率低,成形后的零件致密度高成形质量好。
2、流动性。粉体的流动性直接影响铺粉的均匀性或送粉的稳定性。粉末流动性太差,易造成粉层厚度不均,扫描区域内的金属熔化量不均,导致产品内部结构不均,影响成形质量。而高流动性的粉末易于流化,沉积均匀,粉末利用率高,有利于提高3D打印成形件的尺寸精度和表面均匀致密化。
3、循环性能。3D打印过程结束后,留在粉床中未熔化的粉末通过筛分回收仍然可以继续使用。但长时间的高温环境下,粉床中的粉末会有一定的性能变化。
以上文章由3D打印,3D打印模型,3D打印服务,手板加工为您提供,详情点击我们的网站:http://www.yijiangkeji.cn
2023-07-21 00:00:00
浏览:
可能与传统的减材制造方式相比,3d打印几乎不会造成金属材料浪费,而且这种“增材制造”直接成形的特点使得产品在生产过程中的设备问题大大减少。
金属粉体材料是金属3D打印的原材料,其粉体的基本性能对成型的产品品质有着很大的关系。金属3D打印对于粉体的要求主要在化学成分、颗粒形状、粒度及粒度分布、流动性、循环使用性等这几个方面。3D打印模型
一.化学成分
原料的化学主要成分包括金属元素和杂质,主要金属元素常用的有Fe、Ti、Ni、Al、Cu、Co、Cr以及贵金属Ag、Au等。杂质有还原铁中的Si、Mn、C、S、P、O等,以及从原料和粉末生产中中混入的其他杂质等,粉体表面吸附的水及其他气体等。
在成型过程过程,杂质可能会与基体发生反应,改变基体性质,给产品品质带来负面的影响。掺杂物的存在也会使粉体熔化不均,易造成产品的内部缺陷。粉体含氧量较高时,金属粉体不仅易氧化,形成氧化膜,还会导致球化现象,影响产品的致密度及品质。
因此,需要严格控制原料粉体的杂质及掺杂以保证产品的品质,所以,3D打印用金属粉体需要采用纯度较高的金属粉体原料。3D打印模型
二、颗粒形状、粉体粒度及粒度分布
1、形状要求。常见的颗粒的形状有球形、近球形、片状、针状及其他不规则形状等。不规则的颗粒具有更大的表面积,有利于增加烧结驱动。但球形度高的粉体颗粒流动性好,送粉铺粉均匀,有利于提升产品的致密度及均匀度。因此,3D打印用粉体颗粒一般要求是球形或者近球形。
2、粉体粒度及粒度分布。研究表明,粉体是通过直接吸收激光或电子束扫描时的能量而熔化烧结,粒子小则表面积大,直接吸收能量多,更易升温,越有利于烧结。此外,粉体粒度小,粒子之间间隙小,松装密度高,成形后零件致密度高,因此有利于提高产品的强度和表面质量。但粉体粒度过小时,粉体易发生粘附团聚,导致粉体流动性下降,影响粉料运输及铺粉均匀。
所以细粉、粗粉应该以一定配比混合,选择恰当的粒度与粒度分布以达到预期的成形效果。
三、粉体的工艺性能要求
粉体的工艺性能主要包括松装密度、振实密度、流动性和循环利用性能。3D打印模型
1、松装密度是粉末自然堆积时的密度,振实密度是经过振动后的密度。球形度好、粒度分布宽的粉末松装密度高,孔隙率低,成形后的零件致密度高成形质量好。
2、流动性。粉体的流动性直接影响铺粉的均匀性或送粉的稳定性。粉末流动性太差,易造成粉层厚度不均,扫描区域内的金属熔化量不均,导致产品内部结构不均,影响成形质量。而高流动性的粉末易于流化,沉积均匀,粉末利用率高,有利于提高3D打印成形件的尺寸精度和表面均匀致密化。
3、循环性能。3D打印过程结束后,留在粉床中未熔化的粉末通过筛分回收仍然可以继续使用。但长时间的高温环境下,粉床中的粉末会有一定的性能变化。
以上文章由3D打印,3D打印模型,3D打印服务,手板加工为您提供,详情点击我们的网站:http://www.yijiangkeji.cn
3D打印是制造进程,没有干涉。只要按一下按钮,规划的一切都会制造出来。其他制造办法,如钻头、车床或铣床,应由制造商操作。工件需求用户对齐、测量和加工,因此会给零件制造带来人为错误。3D打印机能制造出许多具有复杂几许风格的零件,如假肢、动物模型等,也能够制造多面体或份额建筑物复制品,详细取决于零件的制造方式。
常见的3D打印设备有以下四种:3DP 3D打印机也叫"3DP喷墨砂型打印机"或者"3DP喷墨金属打印机",主要应用在工业范畴,价钱比拟昂贵。主要资料粉末资料,如石英砂、陶粒砂、304/316L等。出了两款3DP设备这两款3DP打印机具有对资料的兼容性高、毛病率低、维护本钱低等优势,装备在线拍照、机器视觉毛病检测和多终端互联,完成无忧消费和完好过程追溯。
制造灵活性:3D打印技术可以制造出形状复杂的结构,特别适合生产具有定制化需求的产品,同时降低了对传统制造方法的依赖。快速制造:3D打印是一种快速原型制造技术,可以在短时间内创建物理模型或产品样品,加快了产品开发和生产的速度。
使用3D打印模型时,需要注意以下事项:尺寸要求:在切片时,要确保模型的尺寸符合要求,避免出现尺寸偏差。支撑要求:对于有悬空结构或者底部不平的模型,需要添加合适的支撑,以防止模型在打印过程中出现问题。